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Abstract

-This paper summarizes the status of a direct construction
0of an asymptotic representation of a modulating multiphase
wavetrain for a class of perturbed KAV equations. This class
includes the Kdv-Burgers' equation. The calculations apply
on a boundary between dispersive and dissipative behavior.
The construction proceeds by standard asymptotic methods. The

result of the construction is an invariant fepresentation of
the reduced equations which permits their diagonalization.
While mathematically the construction is incomplete, care is
taken to correctly identify the mathematical status of éach
step in the construction. The equivalence of this constructive

approach with the postulated averaging of conservation laws is

established for two phase waves.
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I. Introduction

XY

9 In this paper we study the initial value problem for a

perturbed Korteweg de Vries (KdV) equation:

L AR S

2 ., 2 _
3 x
& U(x,t=0) = Uin ( s x) .
4 -
,) )
' Here € denotes the small parameter (0 < € << 1), while
? B >0 is a constant of order unity. The initial data Uin
Rt
o3 depends upon two spatial scales, a fast scale x/¢ and a slower
*

scale x . The reason we tie the fast scale in the initial data
to the small parameter € in the equation is that the Kav

equation (B = 0) in the "small dispersion limit" (0 <e < < 1)

is known to develop oscillations whose spatial wavelength is

§ ', 0(e). Actually, we will restrict our attention to a special
é class of initial data - a slowly varying N-phase waveform -~

which we will describe in detail later.

. Our goal is to construct a representation of the solution
%‘. U= U(E)(x,t) which is valid for small, but finite,.e .

| There are two generai reasons for our interes£ in this
problem. The first is technical. We desire to develop a method

for the construction of U(e) which (i) is general enough

— A e S b

to include external perturbations (such as dissipation) of a

complétely integrable system, (ii) shows the validity of our

L X D ig

prescription [1,2,3] of "averaged conservation laws" for the
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:; . description of modulating N phase wavetrains,' (iii) is a
: sufficiently standard mathematical téchnique that the cbnstructicn
N * can provide a first step toward a rigorous proof of the validity
g of the representation. There are cases (the sine-Gordon
g equation, [4,5] for example) where the wave train is modu- .
y lationally unstable. To study this instability one must retain
% additional terms in the modulation equations. The technique
% we are developing is sufficiently standard that a systematic
) retention of such higher order ferms can be attempted.
g The second reason we.are interested in this probiem concerns
§ : the Korteweg-de Vries - Burgers' equation itself. Consider
. . the special perturbation £ = - ez Uxx . Then the equaéiau
§ . becomes
! U, -6UU +edu__-8U_=0
t X XXX XX

with 6=8 ;2 . Relax this relation between ‘6‘ and ¢ for
the mqmént and think of the equation as depending upon two in-
dependent small parameters, € and § . When the dispersive
term is absent (¢ = 0), the solution U tends, as §+0, to
a sequence of shocks whose speeds are fixed by the entropy
condition. On the other hand; when thé dissipative term is

_absent (§ = 0), the solution U becomes very oscillatory for
(€)

R o R

y small € .  In this case the weak limit of U as € ¥ 0 is
described by a family of nonlinear, hyperbolic equations [6,7,8,9].

when both the dissipative and dispersive terms are present, but

~ P e

. small (0 <e, § < < 1), shocks will describe the weak limit provided




" the dissipation dominates. Recently it has been established
[ 10 ] tﬁat shocks will describe the weak limit as €40, 840,
provided the dissipation parameter § > B € . Our calculations
(6=B‘82) describe the boundary between dissipative and
dispersive behavior. For stronger dissipation, shocks apply;
on this boundary, the behavior for small ¢ is described by
the equations derived in this paper; for still weaker dissipation,
the weak limit is described by [6,7,8,9]1.

The method that we are developing has several main advantaées:
(i) It cohstructs a repfesentation of the wave which, since
it is valid for finite, but small €, retains the oscillatory
structure of the wavé. (ii) It extends naturally to small
perturbations of integrable systems.

This work has two shortcomings. The first concerns a
limiiation of the method itself. It demands a very restricted
class of initial dgta-slowly varying N-phase waves. This means
thét, for general data, it is not valid un?formiy in space;
rather, it applies-only in the viﬁinity of the "shock front".

The second shortcoming concerns the work reported herein; not

the method itself. This work, although systematic, is not

rigorous; we view it as the first step toward a rigorous derivation.
" In the text we will clearly .identify those points where rigor

is absent.

This work continues our study of the modulation of completely
integrable wave trains [1,2,3,4,5]. The procedure of averaging

conservation laws to obtain modulation equations, as well as placing
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these equations in Riemann invariant form, was initiated in
[11,12] for the single phase case. The constructive methéd
employed hére follows single phase work in [13,14] and the
multi-phase procedure of [15]. 1In the single phase c#se the
results are not new, although our arguments are somewhat more
systematic; in the multiphase case, our results are new because
of our use of the completely integrable exact theory. 1In the
single phase case, dissipative perturbations of nonlinear,‘
dispersive wave trains have been analysed previously [12,16,17].
The (weak) zero dispersion 1imit of-the KdV equation is studied
in [8;9,10].

The last section of this paper is motivated by the
rigorous work of (19,20,10].

Finally, I acknowledge many conversations with R. DiPerna,
H. Flaschka, M. G. Forest, C. D. Levermore, H. McKean, G. Papanicolao
and S. Venekidas. My work has certainly benefited from each of

th'es e interactios.
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IX. Definition of the Problem P
Consider the initial value problem
U. - 6UU +¢e2U__ +8 £(U, eV, eV , U ) =0
t X XXX ¢ EUyr EVL 7 € Uyyrece ’
(11.1a,b)

vt =0) =w™ (X, A ) .
;1n €

Here 0 <€ < <1 and B = 0(1) . The initial data is a

' slowly modulating N-phase waveform for the KAV equation which

we now describe.

The KAV equation has a family of exact solutions of the

form _
= e ——————— e ———— ® {
. U(X,t) WN( e 2K 2 I B ] e . ' Ao'.o'o 'A2N ) IIoza)
where the N "phases" ¢ ,...;ek depend linearly upon
x and t , '
oenj (x,t) = Ky X = uy t. ' (II.2b)

The waveform WN is 27 periodic in each argument

ej Eleg/e . The family of "N phase waves" (II.2a) is

->

indexed by 2N+1 parameters A = (Ao, Al""'AZN) , which
. fix the N spatial wavenumbers «k = (Kl,...,KN) and the N

temporal frequencies w = (wl,...,wN) . The explicit forﬁulas
&

for k= g( A ) and w = w(X), as well as more details about

these N phase waves, will be given later. For now, we only
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remark that in the single phase (N=1) case, (II.2) is a 2w
periodic traveling wave solution of the KdV equatiom.
The initial data (IXI.1lb) is described in terms of an

N phase wave WN as follows: Prescribe smooth functions
+ .
A=2A(x)' in terms of which

[ AL 2 !

w(x, 2 L T
Win X }\(x)) WN(—_E:— = A(x) (IIX.3a,b)

where )
) -+ -+
3"‘63i = Kj(l(x)) + A(x) prescribed
‘6ur problem is to construct a representation of
U.= ue which is valid for small ¢ . We use a standard

asymptotic method which begins with an ansatz:

€ € ' ‘
(x,t) (x,t) ’ : : :
U UE {91——-5— .ek ] x,t] . ' (II.4)

LA € ’

Here the (x,t) dependence of wof = (e{,...;eg) is to be

determined. We define

k€ (x,t) = 3:0F(x,t)
(1I1.5)

w(x,t) = 3pof(x,t) ,

~ and note that

€
€ w *V €
.atu -v(E fat)u
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X € _,9 ¢ 3 €, _ 3 .. 3 £
;Er Where V U =(_ U FA IR ] U ) = € (—' U reeeo g R U ). Of

- | 391 Ee& ael aeN |

. course, definition (II.5) implies N consistency (or integrability)
? . conditions for Gj: '

A

i In terms of this ansatz, equation (II.la). becomes

el
3 % me-VU? - 6u% k®.vut + (K€~V)3u€]
1 -
K. € €..€ € 2 € € € € € 3

: + -Ut + 6U qx + 3((1: .-V) U+ (K" V) (Kx-V)U‘]+Bf(U€,(K -__V+83x)UP,...)]
g L]

v
¥ . €. o€ € oyt € ,gp€ 2 € -
f + e[n VO .+ 3 kg VUL + ok VU] + € [Uxxx] o .
T : § . : )

3 |

% In this equation, expansions of the form
4
. v aw+eul) 4?2 pl®

g k€ vk + ¢ x(l) + 52 K(Z) + .. (117
" W€ w+e ol se? @ 4,

§ . lead to the following sequence of problems:

; 0(e 7): (WeV) W=6 Wk*V)W+ (k*V)" W=00 (II.8
; 0(edy - o3 4 p3 2o, 5=-0,1,2,... (I1.8
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where the linear operator L is given by

LEwV =6 (keV) WH (keV) . (1I.9)

Aoic

SICHY

(0)

i %
.

is given by

o AN i A A

The inhomogeneity F

p(0) - [Wt - wax+3((.<-V)2wx + (e (k- VIW] +8 £(W, (ke VIW,..0)]

h ;'x'—.‘;‘-,‘-"-‘-'-" s

r B w - 6w cBww + 3cem? oy Wy, trr.10

X with similar, but more complicated, formulas for F(J) e 3 2 1.
The sequence of problems (II.8) must now be studied; however,
we first summarize some background material from the theory

D of the inverse spectral representation of KdV. This material

will he used throughout the paper.
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III. Inverse Spectral Theory for the KAV Equation

AR

The background material in this section may be found in

[1,21] which contain referencesto the original literature.

Se%ey }";"o\.) 4

Let gq = q(y,T) satisfy the KAV equation,

VS

)

= 6 - . III.1
a, ady, = 9oy ( )

By considering the "Lax representation" of this equation,

X J
L 3

{1t e

one realizes that it arises as the integrability condition

for the linear system

- 3 + 2(g3 + 9 = ¥
[ yyy (q Y yq)] ¥ a ay

TN

(IT11.2a,b)

3. ¥ = - 2q ¥ + 2(g+2r)a_ ¥ .
. q ¥ + 2(@+20)3

Py

AT

The function ¥ is known as a "squared eigenfunction”.

Equation (III.2a) is an eigenvalue problem for the squared

t).

eigenfunction V¥; equation (IXI.2b) defines its time flow.
The pair (III.2a,b) is compatible since q satisfies Kav.

The pair of equations (III.2) is fundamental in the theory

ol v y A tads 2ty

of the KAV equation. Here we use the pair (i) to generate

a
Y TS

an infinite family of conservation laws, (ii) to provide a
representation of the N-phase wave solutions of (II.8a), (iii)

to provide formulas for the fluxes and densities of the

Ak rateatuta P

conservation laws in terms of the N-phase waves, and (iv) to

compute necessary averades,

oot ¥

p——




By R R T T
# '
tE
wf . . 11
.
. ITII.A. Fundamental Conservation Law
&} '
¥ ‘et g solve KAV and ¥ solve the pair (III.2). Then
iﬁ it immediately follows that Y satisfies the conservation
o law
‘3 a_1[¥] + 23 6(g-2)\)Y - 23_ VY] =0 . III .3
3 T[ | y (6(a ) vy ] ( )
& ‘This fundamental conservation law generates an infinite family
¥
‘ﬁ as follows: One seeks a solution of (III.2a) which has
4 .
‘j the asymptotic behavior ‘ -
Y Yy, tid) = = 4 D> vy, @02 g y el (111.4)
) 28 5=1 3 .
;:
& This ansatz in (III.2a) leads to a recursion relation for the
# coefficients ¥ (y,T),
1;
. 1 )
W o ¥ = [~ .} + qd_+ 9 L i=1,2,... IIX.S
".." y j+1 ! 2 yyYy q y y q] 3 ’ ] ( )
;’
3 v -
0 - 1 .
L]
! |
é Recursion relation (IXII.5), together with certain choices of
it .
! integration constants, provides formulas for Wj in terms of
q and its derivatives. We list the first few:
i
; ¥y =1
o 1 =4
1 2
5 3 5 2 5 1
; Yy =3 q.+ 79, - 3,(z3a9, - 7 9y

- T W TR W a s gy e W v v .
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’

=35 4,3 _2_ 17 2 2
Yy =5 T +F W +ga +3y[-5qq

YY Y

1 3 1
+ = - -z Yy
2 Wyyy ~ 7 Yhyy-39 3]
By ihserting the asymptotic behavior (III.4) ints the fundamental

conservation laws (III.3), we obtain a family of conservation

laws for the KAV equation:

a w- +a 6 \P- -\y- : -28 \P: = j = LY ’ .
T[ J] Y[ (q j J+1) vy J] 0,3 1,2,.. (I11.7)

III. B. Solutions of the Adjoint Linearized KAV Equation

The squared eigenfunction ' generates solutions of the
adjoint linearized KdV equation. Let gq and Q = g+8q denote
two solutions of the KdV equation. Then, as their difference

8q goes to zero, it satisfies the linear 'equation

- T + = .
aT 8q 6 ay qéq. ?yyy 8q o, (I1I1.8)
with formal adjoint
- + ¥ = I1I.9
at 4 6q 8y b4 ayyy 0 ( )

Let gq denote a solution of K4V, and ¥ denote a solution
of the pair (III.2). Then it immediately follows that ¥
satisfies the adjoint equation (III.9); thus, the coefficients

¥. are also solutions of the adjoint equation.

3
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III. C. The u Representation of K4V Waves

The squared eigenfunction system (III.2a,b) can be used
to generate representations of N-phase watetrains. This
construction begins with the observation that system (III.2a,b)

admits a first integral [22]:

1l 1l ,2 2 2
F W,y - 7Y - (@ ¥ =RQ) (III1.10)
To construct N-phase waves, we fix (2N+l1) real coﬁstants
-5
A = (Ao,kl,...,kzu) v
Ao < 11 € eee < A2N ' (IXI.11)
and demand that the first integral Rz(k) be the polynomial
2 2N 4
R°(A) = T (A=) ) . . (I11.12)
k=0 k

This situation is achieved by seeking a solution Y(N) of the
squared eigenfunction system which is polynomial in A of

degree N :

(N) N
¥ (y,t32) = N [A-u.(y,t)] . (III.13)
j=1 )

Inserting this ansatz into (III.2) leads to the "u-representation

of KAV waves with N degrees of freedom" :




SO O

ALIT N+ oSN

' 4

L4

o B o S P

S, e S e e

a (y,t) = A - 5 pely, )

N

v (v, 10 = 1 (=g (v, 7))

j=1

2N
where A= I A., and
j=0

where the uj(y,T) are constrained by

and satisfy the ordinary differential egquations

R(ﬁ-)
s 24 TﬁfTiirui)
ir]
. A R(uj)

i#3.

when evaluated on dy’ the fundamental conservation law

(I11.3) has the u-representation

: 2, T+a X=0 ,
N
I (A-uj(Y:T))
T-Y-'(N)( 1 T311) = jsl.
g0y ‘//ZN
(A= A)
" k=0 k
N
N n (l-uJ(y.r))

X =|6a - 12[x +3 uJ(y,T)] J=1

. . N
=1 //ﬁn (A=)
k=0

T T8N T e g s . e e . . - .. s s N e
G X e N g A R S g A A G s Ty e S S e M, S G K S

- 2T

Y o~ L. a s v e . - N 2wkl o 5 " G EEr A g 2 R
g s W et AR GBI, e § o T PRSI T Ty ool Fai T A A e A e St e T sl e TR N e Bty Y
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(II1.14a)

(III.14Db)

yy

|

(11I.140)|
(I1I.144d)

(IXII.l4e)

(III.14f]

(III.1l4qg

(111.1+
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5 . .
i * Formulas (III.1l4) summarize the "p-representation of
3 '
3 . KdV waves with N-degrees of freedom". We now show that these
b exact solutions of KAV are "N phase wavetrains"; that is,
% they are solutions which are quasi-periodic in space and

"

¥ time which depend upon N phases.

A
X

5 III. D. The »01 Representation of KdV Waves

2 The wave dy admits an equivalent representation which

)ﬁ : results once an Abel transformation is used to integrate

- the u equations (III.l4d,e). On the Riemann surface

3 SN

g R = [A,R(A) = g(k—kk)] + one fixes a canonical set

3 v

f of a-b cycles (Figure 1l). On this Riemann surface, we introduce
A the following objects: (i) a basis of holomorphic differentials,
d _ . ‘ _ X

;

»

¢

A

i

; .

. ' Figure 1
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> A
= j-1 4
¥, = ?,_:cij A rOT (I11.15a)
normalized by the condition
{ wj = 61j H (IXI.15b)

ai
(ii) A symmetric matrix with positive definite imaginary part,

B..E§ v, (I11.15¢)
b, I

(iii) Two differentials of the second kind

- N
=‘ -1 E = di
ﬂl - i 2- + J= Dj A ] -—(x‘” ’
(111.16a,b)
o . N
N+l 1 N j-11 4dA
0 = - 1 A + z- A + Bj A m
2 2 ;-;
. 2N
where the coefficient A = E'—>': ’:'Ak , and the coefficients Dj

and Ej are uniquely determined by the normalization conditions
Q, =0

. %

'bi

These quantities form the ingredients for a change of

variables from | (ul,...,uN) -»> (91,...,9N) 2
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N Yy ' ,
I |
9i (B )ij kZl: L "’j (X11.17 )
f .

I1f uj(y,t) satisfies the differential equations (II1I.1l4d,e),
then the new variables Oj(y,t) satisfy
9, @, = k.,
J

Yy 3
(II.18a,b)

ar Gj = mj ’

where the constants k., and wj are defined in terms of
->

) B

&>
Ky =X 0 = - §ad 2
(II.19a,b)

wy = wy(A) = - 12 Q .
J J §aﬂ 2

Using theta functions, one can invert transformation (III.17)
and give formulas for "j (and therefore qN) in terms

of (GJ'...'GN):

Q= A+ T - 23, log Ee’(z(e):n)] ' (I1I.20a)

where the theta function is defined (for =z ¢ CN) by

o(z;B) = E;exp{ﬂin(m,z) + (m,Bm))) , (III.20b)
meZ

Py
- e M 3 Skl 2 v Wy 8, CNERY ) . . . .
FR TR ST IR NG N N T L N e S et e e, e L - e
B : " . BT Tha Nl Yot T e N T T T e Tt T g e A e e W Ty et et kL ot PR
o o . v B
.
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and 2z(0) denotes the linear map J
N i
J)
= B
zJ(O) ) € 5o '03+d‘j s
J=1
(II1I.20¢)

where B(J) is the JEQ-'column of the period matrix B

Finally, the constant I is given by
' N

Tz -2 Z_'r' § A V. (III.20d)
S L

and d denotes a real constant which plays no role in the
following.
In this manner the theory of the exact KdV equation has
generated a solution (IIX.20a) in the form
->

Qg = G (0,0 041 N)

where the (y,t) dependence enters only through the phases,

[ ]
* t g + T + *
and where the wave form is 2m periodic in each individual phase.
Thus, the constants Kj and wj are enterpreted physically

as spatial wave numbers and temporal frequencies.

This completes the summary of that material from the in-

verse spectral representation of exact KAV waves which we need

for this paper. Now we return to the analysis of the sequence of i

problems (II.8).

e e mam e e . .o
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IV. The Leading Order (0(6-1)) Problem.
In this section we construct solutions of (II.8a). Fix
. >
2N+1 real constants A = (AO < )\1 < ee < >‘2N) , and
construct the B matrix and the differentials szj as in
->
(IIX1.15) and (III.16). Define the wave vector k=«(A) and
->
the freqeuncy vector w = w(A) by
-
k; (A) = - § R
i a. 1
i
> , "(Iv.la,b)
. a,
i
> -+ N
For this k=¢()A) and w=w()) , we seek W:T (N-Torus) »+ IR
which satisfies the 0(c 1) problem:
(V)W - SW(k-V)W + (xeV)> W=0 (1v.2)
Using material in Section II1I, we find solutions of (IV.2):
o o
W= W(O;0,)) = qN(G-e;A) (1Iv.3)
Equivalently, we may use the u-representation:
N
o * o *
W=W(O;0,A) = A -2 i'S_ :uj(e-e;x)} ' (Iv.4)
where the u variables satisfy
R(uy)
(uc-V)uj = -2i ——————j———“ (I1v.5a)

ir3 (“1'"j)




L e L S 0 A e T 6 P T M i A A S N A O I I N A

- -

. R(u.) ‘
(WeV)u, = =2i |28 - 2 'S; :u. d (1V.5b)
< J i7 J mo(u, - u;)

g

"In this manner we generate a 3N+l real parameter family of

N

solutions W:T -+ R of (Iv.2). N of the parameters,

- -] ] .
e=(el...,eN) , are trivial in that they merely center the N

phases O=(01...,GN) . The remaining 2N+1 parameters

->

A= (A

0'A1""'A2N) carry qualitative information about the ‘

wave. For example, they determine the wave numbers K=(K1,...,KN)

and the frequencies w=(wl,...,wN) by (Iv.l). In addition,

they determine the mean of the wave W:

W) = 1 N I W(0O) dNe . (IV.6)
N :

: (27) T

Remark (i) Physically, it seems more natural to co-ordinatize
the N phase waves by the N spatial wave numbers «k, N temporal
frequencies w, and mean (W) rather than by the 2N+l

> -+

parameters A ., However, the A co-ordinates are better understood

mathematically.

Remark (ii) For the single phase (N=1) case, equation
(IV.2) is an ordinary differential ecuation of third order which
is easy to analyse. One quickly shows that all of its 2n periodic

solutions belong to the 4 parameter family (IV.3) with parameters

o
(A grAyrhge@) .




-----

Remark (iii) For N > 1, I suspect that all solutions of

(IV.2) which genuinely depend upon all N phases.(%g # for any j)

belong to family (IV.3). Assume there exists werh > R which
solves (IV.2), depends genuinely upon all N phases, and does not
belong to family (IV.3). Then W(y,t) = W(Kly+wlr,.,.,KNy+mNT) is a
solution of the KAV equation which is quasi-periodic in y and =1
with exactly N frequencies, and yet is not an "N-gap potential?

for inverse spectral theory. I think that no such solution exists.

Remark (iv) Notice that in this theory it is easy to

shut off a phase, say Gj . One seeks a W which is independent
of ej. If Kj and wj go to infinity, this situation is
fo;ced upon us. On the other hand, if Kj and w. vanish

(a soliton limit), a/aej is removed from equation (IV.2).

In any case, such situations must be understood before a

modulation theory sufficiently general to create and destroy

phases can be developed.
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V. Solvability Theory for the Linear Problems
Fix W, a solution of (IV.2) in family (IV.3). All
of the 0(€J), j > 0, problems are of the form
LU+ F =20, (v.1)
with a prescribed inhomogeneity F': TN + IR . Here the linear
operator L is defined in terms of W by
LU = (0V)U = 6(k+V) W U+(k-¥)> U (v.2)
(We work in the Hilbert space of functions U:TN + 1R which
are square integrable over the torus TN .)
For the solvability theory of (V.1l), we need to under-
stand n(L), the null space of L, and n(L*), the null space
of the adjoint of L. Here the formal adjoint is given by
+ 3
L'V==- (0V)V + 6W(k-V)V =(x-V)"V . (v.3)
We have the following fact concerning the null space n(L+):
m _ N +
Theorem VI: (a) ¥ = 0 (A=p.) & n(Ll) v A
=1
(N) = :
- ¥ - § : Ly—J-1/2 +
(Vv.4a,b,c)
() ¥y ¢ nwh v 35 =0,1,...

......................
. . . .

et st et .
et .
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14,8
N The proof of this theorem follows immediately from the material
o around (IXI.l4), together with the fact that uj(y,t) depends
Cg upon (y,t) only through the phases ej(y,t) = ij+wjt.
2
N |
< Theorem V.2: Formulas (V.4) generate only (N+1) 1linearly
-
Z- independent members of n(ﬁ+). These may be represented as
= (a) {0n10,4¢e4.,0 , wWhere 1 (A-p.) = Z :o.A ’
X 0L N j=1 b 3= ).
b (V.5a,b)
',: * (b) {‘yo"yll..‘,‘yN}
:'47
x Theorem V.3:  (a) -g‘g—.e n(L) ¥ 3j=1,2,...,N
J
%? (V.be ;b)
3 (b) 1 -6 (kY )W e n(L)
% Using formulas (V.5), we have (N+1) solvability conditions
é which are necessary if (V.1l) is to have a solution. For
5 N=1, simple analysis of the ordinary differential equation shows
: - that these are actually necessary and sufficient. We have
% .
J
.3 Theorem V.4 Let N =1 . Then
(a) n(Lf) = span {1,w}
(v.7)
. ' (b) n(L) = span {we, 1-6 « W }
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Thus, in the N=1 case, both n(L)

dimension 2.

Remark (i) For N > 1,

n(Lf) have dimension N+1l. If so,

We have not succeeded in proving this.
conditions

(Wj,F) =0, for j 0,1,.

N > 1; necessary and

IRV A VLI IR IR LRI AR R A

and

we suspect that n(L)
ntt) =

------

........

n (L+‘)

have

and
span {?0,...,WN} .

For now, the solvability

— (v.8)

sufficient for N = 1.
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- VI The 0(e ) Problem
: ) Armed with this solvability theory, we return to the
<%
? sequence of linear problems (II.8b). Explicitly, the O(eo)
1@ problem is |
. r\,’
. L ol 4 %0, 310 oo, (VI,la)
N
i (0) 2 -
E ¥ = [wt - 6wwx + 3 [(K'V) wx + (K'V)(KX-V)W
& + BE(W,K*VW,...)] , (VI,1b;
5 n
O ot evyw - e Dy + 32D vyuy
;L . : ~(0)
g ' In the source, one does not have to worry about F
vy
Z because for this part of the source, we have an explicit
e .
i solution. Recall that W satisfies
s 3
b (V)W - 6W(k*VIW 4+ (x*V)"W = 0.
& Define 2N functions on the torus TV by .
(w,)
J
(x,)
- oW .
x =¥ ye1,2,.N

Then, by differentiating the W equation, one finds

GO | PO Y

(WJ) P
. BT e WO (VI,3)
X (x,)
ok K
% J _9_ )2 9 =

J J

p .
3 . (0) -
‘ Using (VI,3) we may write U as follows:
b
sﬁtz R
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(w,) (k) ~n
J=1
where
L Y0 4 %O . (VI,U4b)

~(0
Thus, the solvability theory need only treat F( ).

Theorem (V,2) provides N + 1 necessary conditions for

solvability,
P ¥0)y 20 for § = (0,1,...,N). (VI,5)

In this manner, we arrive at the modulation equations which

must be satisfiled:

9,.K

£y = ame s J = 1,2,...,N

_ (v1,6)
(VJ, W, - 6wwx +3 F(n-v)zwx + (x-V)(nx-V)WJ + Bf(W,k+VW,..)

= 0,5‘0,1,...,N

Equations (VI,6) are the main result of this section.
They provide a system of 2N+1 first order partial differential

equations for the 2N+l parameters X = (A The

0,...,x2N).
first N equations result from cdnsistency of the ansatz;
"the last N+1 from necessary solvability conditions.
Equations (VI,6) provide a closed system which depends only
upon X, Kx, Xt' In the next section, we pléce this system
in manageable form.

If the null space is exactly N+1 dimensional (as we

know for N=1 and suspect for N > 1), these solvability
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conditions are necessary and sufficlent to ensure the

(1) N

existence of U : T » IR . At this stage, one can

proceed in two different directions. (i) One can continue

to generate higher order terms U(J) in the expansion of

vt The corrections to the frequencies wJe ', the wave
numbers KJE , and the mean <U®> will provide sufficient
freedom to ensure solvability at each stage. In this manner,

a formal asymptotic expansion of the form

Ut ~ Wy + eU(l? + 2y(?) + ... can be constructed.

(11) Alternatively, one can truncate the expansion at

Wy (giiégl ; X(x,t)) where the X(x,t) satisfy the modulation

€

- W is 0(e) with some

N
uniformity. The second direction is the most important.

equations (VI,€) and prove that U

Pt e
F

-
RS |




VII. Connection between the Modulation Equation and

Averaged Conservation Laws

The modulation eguations

3 =aij '] j =1,2,...,N

%5
(VII.la,b)
(¥, wt-swwx+3[(.<-V)2wx+(.<-V)(.cx-V)w1+ef(w,.<-w, .))=0 .

j = 0,1,2'-..'}‘11

although a closed system for x(x,t), appear to be a
complicated system of nonlinear partial differential equations.
In [3] we show that, even in the presence of an external
perturbation £, these moéulation equations are actually very
tractable provided (VII.1b) can be replaced by N+1 averaged
conservation laws. In this section we derive the validity of
this replacement for N = 1,2, (This is sufficient to treat

2 phase waves.)

VII.A. Averaged Conservation Laws

One approach to deriving modulation equations is to

average conservation laws. One assumes that the exact eguation,

2
U - 6Uy + €d _ + ee(Uey,edU_,..0) = 0, (VII.1)
has a solution of the form
el(x,t) GN(x.t)
U'\’ %[—T_ g oe ey '___G:'—'—'; X(x't)} + o‘e) r (VII.Z)
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which is 27 periodic in each ej. In addition, it has

conservation laws of the form

3, T(U,€U_,...) + 3 X(U,eU,,... ) + BG(U,€U_ ,...) = 0 , (VIL.3]

x'ooo
for any solution of (VIiI.l). 1In particular, evaluating on
solution (VII.2), conservation law (VII.3) takes the

form (3, » £ eV + 3¢, etc.).

o] =

[(WeV) T+ (xe9)X ]
(VII.4

° ' 2 ' :
+ =% T(WN,(K'V)WN,...) + 5 XKWy, (k27)W ,..,)+8G(WN,(K-V)W.,..
+ eeo = 0

When averaged over TN; the 0(6_1) term averages to zero, and one

is left with the averaged conservation law

3t<T(W&.(K°V)WN,...)> + 3x<X(Wﬁ,(K°V)Wh,...)>

+ B<G(Wh.(K'V)Wﬁ 1ees)> =0 (VII.

This is one equation among 2N+l unknowns.
Each K4V conservation law will lead to an averaged
conservation law of the form (VII.5). Indeed, consider

th KAV density as generated by the recursion relation (III.5),

3

Wj = Vj(U,EaxU, ooy (Eax)ij) . Here kj is the order of

the highest derivative of U in VJ . We compute:
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3 .
01 k
3 2 2 v o (ea?
2=0
lfj Y. ,(€d )"[GUU -e2y - Bf(uU,eU )]
<l | = =g 3o % X xx At
‘: - k'
2%, - B I ¥, ,(ca)% £(U,ey )

] = - L3 - [ 2 N )
X3 7 g dATX T X '
' where Vj 2 denotes a partial derivative. Thus,
y ’
! we obtain the perturbed conservation law ’
¥ ¥, + X, = BZJV (ea) ¥ £(u,c
;:. ) t j X j - - z=0 jl!' x) (Ul Ux' '00) [
% : with the right hand side explicitly given in terms of the jth
X
9 density and the external perturbation f. FEvaluating this
g conservation law on the wave form (VII.2), and averaging
N over the torus TN yields the perturbed avaraged conserva-
2’ tion law
&
" at<wj> + ax<6(wwj - "'j+1)> + B<Gj>,' o (VII.6a)
&t where K
3
! <G,> = I (v, z.(k{V)” £(W, KW, ...)), (VII.6b)
e 3 g=0 I’
g and the densities Wj are evaluated on the N phase wave form W.
3 _
j For later use, we list the first three:
q | 3 W> = 3, <3025 + BE(W, (K-VIW,...)> =0

2, 25 _ 5 o242 (kv 2> + B E(Wik-THynrn)> = O

t 2 X 2 ’ rees

. 3, 1 2 9 ..4 2, 3 29y 2y 2
3t<w + 3 (KeVW)T> =3 <5 W™+ 12W(x VW) “+ 5 ((k V) “W)

+ B3W2E + (kM)W (ReV)E> = 0

e T e T
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Q VII.B. Connection between Averaged Conservation Laws

* and Null Space Modulation Equations
b
W)
2~ Consider the null space equations (VI.S5),

3 (v, 7% =0, 3=10,1,2,...,N,

Q (Vvii.8a,b)
s
'b ~
A PO =W - 6+ 3 (M2 4+ (ko) (e, sTI W) + BECH, (c-TIV, ...)

'.
s ‘
) We show the first three of these are averaged conservation laws;

.y
e indeed, they become (VII.6) for j = 1,2,3. Since Yo = 1, the
G first is immediate:

3
- ~
% 0 = (WO'F(O)) = (1, F(O))

. = 9.<W> -~ 3 <3w2> + B<£>

;% . t X

The next is almost as simple:

0 = (\yl,f"o’) = (w, 70,

ST DEAY

W W) = (W, 6WH) + 308, (7D 2H + (ke¥) (k, *T) W) + B(W, £)

Y 1 3 . '
- = 3 3<W> = 2 3,<W> = 3(keVW, 3 (<oVIW) + B(W,£)
o 2
e, we, o 3 . 2
: = 3,8 - o 2 + 3 (v sacu .
A The verification that the third null space equation yields
[
?: the third averaged conservation law is more tedious.
i’ It uses an extra ingredient -- atrj = 3ij . This calcula-
T* ) tion begins as follows:
E
‘
A
'
2

. .vv .’ r‘ ‘,"- *b"- ‘,,.....'.. " a8t -

AR A TINCICR RIS Y - AR W
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2 0 = 2(%,, F?) = 3w? - (0, ¥

9 = 3W- (o 2W, =3 W)+ 3o 2+ 3(k ) (k VI W + BE)
28 = W20 - (e 2w + 9087, 0D ) + 300 2, D) )

3 + 9002, (e M2 = 31k 2w, (k) B )

':_: + 9("2, (c*V) (KX'V)W) - 3((K'V)2W, {x V) (Kx'V)W)

~ + 382, 6) -B((xV) 2w, £)

5 ’

& = 3, <3 + (W, (o W,) - 2 3 <wd> = 3((eWIW, (kT (D))
N t ' t 2 x f x
A = 9T, e W) = 3D W, (ke 2U ) - 9 (kM WP, (e a7 W)
5 = 3((k V)W, (ko) (e sTIW) + B<E[3WZ = (xe¥) 2] >

‘ ) |

g = o <> + 3 LD ey, (koW - 2 < § uts

7 _ 2 2 2

2 3((kee M) Wy (ko) “W ) = -3 ((k+9) “W, (k) (k -V 1)

7 :

y = 3( (kW (koD (D)) = 9((k=TIu,, (k=TI W?)

8! X X

¥

J - 9((.<-V)w2.(nx'V)w) + _B<f[3w2-(n<-v)2wl >

Continuing,

'?"_ r ‘,!

-t e B

o
L s

R

L g g

A A YO S S NN TN S N
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,:';‘ﬁ-!.f’,"kv‘\t; L e, I A WP “:‘-_‘...‘...‘..._‘..-_'.._.-_’-....‘-...._ AR A it DA A ..:.;--J-

. - 3 1 . 2, _ 9 .4 2 oy 2
0 at<w + 3 (xeVW) "> ax< 5 V' 4+ B<E[3W = (KkV)*W]>

- %

: - (e, (kW) - 3 <3 (k)2

3((x7) W, (£29) (x_+7) W)

+

LA LR

= 3 <120(k-VW 2> + 12(W, (kv 2) + 24 (W, [(x-T)W) ke TW )

: + 24(W, LMW (kW) = 6((kTIW,W(kDIW) = 6(L(x-TIWIZ, W)

18((z-'V)wx,wu<-V)w) - 1s(w(n<-V)w,(xx-vw) .

Therefore,

(kev) 2> = 3 < 3 v

3 7 whe 120k 7w 2

at<w +

C TRB X T

. + 3 1eem?n 2+ s auwd-(xov) 2w

= (- VIWe, W) = 3((x+9) W, (k+7) (x V)W)

: - ((k=9)W, 6U, (K-TIW + €Wk, V)W) (VII.9)
= (K9, (K -VIW + 3(K-V)2(KX°V)W] :

- GW*(K'V)W - GW(KX'V)W .

Thus, the third null space condition will yield the

third averaged conservation law provided the expression
((ReVIW, (K = TIW+ 3(c9) 2 (k) W= 6W (c+V) W= 6W(K V)W) (VII.10)

vanishes. To reach this point, we merely integrated the null

space condition by parts several times. Now we employ the

first N modulation equations
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to replace expression (VII.1l0) by

(DU, (@ -V W+ 3T 2K cTIW = 6U (KTIW = 6W(K -7) W)
(vir.io*)

To show this expression vanishes, we use the equation satisfied

by the N phase wave :
(V)W - 6W(K:V)W + (xev)3w =0 .
Differentiating this equation with respect to x yields
@ VW, - 6W(k VIV, = 6 (D)W + (kT
- @ VW - 6W(K V)W + 3(K°V)2(Kx-V)W =0 .
Finally, take the inner product with (k*V)W:
()W, (@ TIU = BU(R-TI U, = €W _(KTIW+ (Ke9) W,
+ (0 V)W= 6W(K VIV + 3(.<.v)2(,<x'.v,w) -0
That is,
(CkTIW_, (@-T)W = 6W (ke V)W + (k+7) W)
+ (ke D)W, ()W . 3(K'V)2(KX'V)W- 6W, (K V)W - 64 (K V)W) = 0

The first term vanishes by the fact that W solves the N phase

equation; thus, we arrive at the vanishing of (VII.1l0')!
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In summary, we have shown that (i) the first two null
space equations imply the first two averaged conservation laws,
and that (ii) the third null space equation, together with
the conéistency conditions Ky = W o imply the third
averaged conservation law.

Remark (i). Presumably, the jth null space equation,

together with the consistency conditions, implies the jth
averaged conservation law. To prove this statement, one
needs a more abstract argument than the explicit calculation

described above. As yet, we have not succeeded.

Remark (ii). We have completed a first step toward

this argument. Consider (GHj/Gwat). Using the identity [31]

1 j+1
Hy = 53571 sw
we obtain
9 < 1 6Hi+1 > = i. H
9t 23+1 oV it )
oH, 3H

where Hj = Hj(w;k). Thus,

(1,_1 ) = iy & 3_J+_1| > 5k, (VII.11)

Equivalently, it may be better to use a formula from [ 1,

L
6y y ¥
d A Sy A SY
w- Nt ax [ww*ww ' (VII.12)

where WA = axw V' = axv .

e Ly i g b e m) e o R -ab arere .
N T R A A L N R AN C D A T O VR A T/ SR by C e e Gy T
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VIII. An Invariant Form of the Modulation Equations

b
L)
f
3 In this section, we assume the correct modulation
¥ .
equations are of the form
é Bt Kj = Bx wj J=1,2,...,N
% (Viiri.la,b)
;; . at (Wj) + ax ¢ xj) + B(Gj> j=1,2,...,N+1
- . We summarize some results of [3] in order to emphasize that
f these modulation equations are indeed tractible.
) In [3], we establish the following
4
!
J
. Theorem The modulation equations (VIII.l) admit an
' equivalent representation in terms of the differentials
A
3 91,92 :
3
H
‘
. atszl-lz axnz + Bd4dF =0 , (VIII.2)
3 where F is a meromorphic function on the Riemann surface
’ R of the form
N
N N
A A()) E : 3

L . NS TR S VRN ST TN Y]
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The coefficients aj are fixed in terms of (Gj) by the

linear system

j ' k 2N
; : 1 EE: :E: k-m _ 1 c
- pj_k [(N k)(lN_k - 3 [ )\2 ]aN_m ]-— z—j-Ti (Gj+l>,3——0,1,2,.-.

m=0 |4%=0

(VIII.3Db)

Here

Representation (VIII.2) is fundamental. It contains

alternative representations and quickly shows they are equivalent.

For example, the most useful mathematical form is an immediate

Corollary (Riemann Invariant Form of the Modulation Equations).

By evaluating the invariant representation atnl - BXQZ + BAF=0
at the branch points, one obtains
atxz +is (}) axxz = B NFT . , 2=0,1,...,2N, (VIII.4a)

th

XY
characteristic speed s (2)(A) is given by

where the &
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j-1
-12 Z E, A
() 7, - = o
s () = . (VIII.4Db)
N+1 ‘

.-
E:D.)\j
=1 3t

A fully nonlinear modulation theory cannot be simpler than
the Riemann invariant form (VIII.4a). We emphasize the "internal
perturbations" described in the introduction cause the parameters
to modulate with the characteristic speeds s(l)(;). The
external perturbation f provides the right hand side of the

modulation equations.

...........
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IX. The Weak Limit as a Measure

Recently, in some very 1interesting mathematical work
[19,20,10] weak limits of solutions of nonlinear pde's
have been described by a measure. When the nonlinear pde
is dissipation dominated, as in Burgers' equation,
the measure is simply a Dirac measure supported on the shock.
When oscillations persist as in the small dispersion limit
of KdV, the weak limit is more interesting. As yet, the
measure has not been rigdrously characterized.

Our purpose in this final section is to calculate,
with heuristic reasoning, the measure which describes the
weak limit as € =+ 0 of problem (II.la), in a region of
space-time where the solution is described by a modulating
N-phase wave. Since modulation theory constructs the
solution for small but finite €, our representation certainly
contains enough information to calculate the measure very
explicitly.

Consider the solution of

2
u_ - 6UUx + € Uxx

t X

as constructed in this paper. Namely, in a region S of space-

time, let u® be the modulating N phase wave

T P TN e R L e e e s
g R . A, ’ K R .t o A AT G e o Tt e ~'~-‘.‘-' R

+ 8 f(U,EUx. ees) =0, (IX.1)
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(8 (x,t) 8, (x,t) '
u(x,t) = le—l——i—- eenr A Xx,e) )

+ E U(l) (g’ ; x,t )+l..' (IX.Z)
with the modulation of the parameters X(x,t) described by

Q = dF (1x.3)

Fix some t and a spatial interval I such that (t,I) € S ;
further, let ¢: IR » 1R denote any test function with
support within I. Fix f: R + 1R and consider

o

[¢. £ )= [ ooe £ o) ax,

-0

which one must consider in order to describe the weak limit

£(U°(.,t)) as € + 0. We compute:

. £u'® (., e0) = [c»(x.t) £(0'%) (x,e)) ax

xi+A/2
) I ¢ x,t) £00'%) (x,8)) ax
i=- x;-48/2
o X, +A/2
) [ ¢ (x,t) f[wN(e(t £X) : X(t,x))1 ax
i=-= X -A/2
- x;+8/2 6
v L dxg.t) I £ 1w (LX) Tee,x ) 1ax
i==e x.-A/2 .
i (A tiny)

y 'ﬂw‘ o, l,?v e \;"V' r"f'{' ' ", 3’\‘ Az
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: X, +A/2 - 5 :
© 1 K(xi,t)x- (xi,t) \
—A/2
o A/2e
= .2 $(x,,t) A { I f[wﬁ(Ky -B; X(t, Xy N3] dy}
i=—c A/2¢€
n E $(x.,t) A J I £IW (0,,...,9.: T(x.,t)]dnel
= e i l(21r)N g N1 N i J
T
(e + 0 and ergodicity)
’ | n I o(x,t) <E(W ; X(x,8)> ax (8 » 0)

Thus, we compute

lim (6,£(U%(.,t))) = (¢, <€> ) V ¢

-e

€40
that is,
R (x,0)) s <EG (s X(x,80)> (IX.4)

1 . I £1Wy (05 X(x,£0)1 & Yy,
(2w) TN

The measure itself can be‘characterized very explicitly by

using the u-coordinates for the torus (see VII.18 ):
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(IX.5)

1 (“1 - ¥.)

isl J ,

. N ‘ du 1 A e e e duN

(By translation, we can remove the function A(x,t) from the
argument of £.)

Formula (IX.5) is the main result of this section.
It shows that the weak limit as € + 0 can be characterized

by a measure, and gives an explicit formula for the measure.

Notice that the (x,t) dependence of the measure is
through X(x,t) which satisfies Q = dF. This 1s precisely the
measure used in [1].

Remark. Our calculation is limited.ﬁo the region §
where the solution is an N phase wave. It is not uniformly
applicable. However, we bellieve 1t indicates that the
general weak limit, which would be valid for all space,

should be characterized by the quadratic variational problem

of .[8,9].
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